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Abstract 

While extensive research has focused on the DNA methylation induced by the anticancer drug temozolomide (TMZ), there remains a gap in our understanding 

of its potential to methylate proteins. In a previous study, we explored the therapeutic effects of TMZ on histone methylation in glioma U87 cells and triple-

negative breast cancer cells (MDA-MB-231) and understood how TMZ affects protein levels through this mechanism. Specifically, we are interested in histone 

proteins because of their roles in DNA binding and gene regulation. We observed a significant change in histone methylation levels in glioma brain cancer cells, 

but did not obtain a conclusive result in MDA-MB-231 breast cancer cells. In this research, we examined histone lysine demethylase activity following TMZ 

treatment in MDA-MB-231 breast cancer cells. We observed increased histone methylase activity in MDA-MB-231 cells. The results demonstrated TMZ's 

anticancer activity at the protein level, as evidenced by increased histone demethylase activity in MDA-MB-231 triple-negative breast cancer cells. Elucidating 

the effects of TMZ on protein methylation may reveal novel therapeutic mechanisms beyond its well-established DNA-damaging activity. 
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Introduction

Temozolomide (TMZ) is a prototypical alkylating agent with well-

established anticancer properties that exerts its therapeutic effects through 

DNA and protein methylation, functioning as a potent epigenetic regulator. 

As a prodrug, TMZ undergoes pH-dependent degradation through a well-

characterized pathway: it first converts to 5-(3-methyltriazen-1-yl)imidazole-

4-carboxamide (MTIC), which subsequently decomposes into 4-amino-5-

imidazole-carboxamide (AIC)—an inactive metabolite—and a methyl-

diazonium ion that serves as the primary methylating species (Figure 1). 

The therapeutic potential of TMZ has been extensively characterized at the 

DNA level through genetic and molecular approaches. The methyl diazonium 

ion methylates DNA at multiple nucleophilic sites: approximately 70% at the 

N7 position of guanine, 9% at the N3 position of adenine, and critically, ~5% 

at the O6 position of guanine [1-2]. Although N7-methylguanine and N3-

methyladenine adducts constitute the majority of lesions, they are efficiently 

repaired by base excision repair pathways and contribute minimally to 

cytotoxicity. In contrast, O6-methylguanine (O6-MeG) represents the 

principal cytotoxic lesion (Figure 1).
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Figure 1. The Cellular Process of TMZ At DNA-Levels Inside The Cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

During DNA replication, O6-MeG mispairs with thymine instead of cytosine, 

generating G:T mismatches. Futile cycles of mismatch repair trigger DNA 

double-strand breaks, genomic instability, cell cycle arrest, and ultimately 

apoptosis. [4-7] 

Despite extensive characterization of TMZ-induced DNA modifications, its 

epigenetic effects at the protein level, particularly histone methylation and 

demethylation, remain largely unexplored. Histones are essential for 

maintaining chromosomal structural integrity and chromatin organization, 

and their post-translational modifications directly influence gene expression 

and genomic stability. Understanding how TMZ interacts with histones and 

their regulatory enzymes may provide valuable insights for developing 

targeted epigenetic therapies, particularly for treatment-resistant 

malignancies such as glioma and triple-negative breast cancer (TNBC). [8-

18] 

Our previous studies demonstrated that increasing TMZ concentrations 

altered histone methylation patterns in U87 glioma cells; however, this trend 

was not evident in TNBC MDA-MB-231 cells. [19-21] The present study 

aims to identify histone-modifying enzymes regulated by TMZ and establish 

their role at the protein level. 

Materials And Methods 

TMZ Preparation and Treatment 

TMZ (Sigma-Aldrich) was dissolved in dimethyl sulfoxide (DMSO) to 

prepare a stock solution as described in a previous study. [21] Working 

concentrations of 100 µM were prepared by dilution in complete culture 

medium immediately prior to each experiment. The final DMSO 

concentration in all treatment wells did not exceed 0.1% (v/v) to minimize 

potential solvent-mediated cytotoxicity. 

Culturing Cancer Cells for Experimental Assays 

MDA-MB-231 (human breast adenocarcinoma, triple-negative) from ATCC 

was used in this study. Cells were cultured in Dulbecco's Modified Eagle 

Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% 

penicillin-streptomycin antibiotic mixture. Cells were maintained in a 

humidified incubator at 37°C with 5% CO2 atmosphere. Cell culture medium 

was refreshed every 2-3 days, and cells were passaged upon reaching 80-90% 

confluence using 0.25% trypsin-EDTA solution. 

Nuclear Protein Extraction Assay 

Nuclei were extracted using the nuclear protein extraction kit from 

EpigenTek (Catalog # OP-0002). 100ul DPNE1 buffer was added to each 

pellet (pre-extraction buffer – DPNE1). The sample was left on Ice for 10 

minutes and then vortexed vigorously for 10 seconds. The solution was 

transferred to an Eppendorf tube and centrifuged for 1min at 12000rpm. The 

pellet was treated with 2 volumes of DPNE2 (extraction buffer DPNE2) and 

kept on Ice for 15min (vortex every 3 min, sonicate every 3 min for 10 

seconds). The solution was then centrifuged for 10 minutes at 14000rpm at 4 

°C. The supernatant was assayed for protein concentration. 

Protein Concentration Assay 

The bicinchoninic acid (BCA) protein assay was used to determine the 

concentration of nuclear proteins. The working solution was prepared by 

mixing reagent A and reagent B in a 50:1 ratio. 100 μl working solution was 

added to each well, followed by 10 μl standard or sample in a 96-well plate. 

The standard samples were prepared at concentrations of 0, 2, 4, 12, 16, and 

20 μg/μL. Both standards and samples were run in duplicate. The plate was 

incubated at 37 °C for 1 hour, during which a violet color developed. 

Absorbance was measured at 562nm after the incubation using a BioTek ELx 

808 plate reader. The linear regression equation was obtained by plotting 

concentration (x-axis)) against absorbance (y-axis). The concentration of the 

samples was then calculated using the linear regression equation. 5-20 μg of 

nuclear protein was used for the demethylase activity assay.  10ug level is the 

optimized condition. 

Lysine-Specific Histone Demethylase (LSD1) Activity Assays 

The assay is performed using commercially available assay kit from 

EpigenTek (Catalog # P-3078). 96-well plates were employed to evaluate the 

effects of TMZ on histone demethylase activity. The assay uses antibodies 

specific to methylated histones to quantify methylation. We tested histone 

lysine demethylase (LSD1) targeting histone H3 at lysine 4 following TMZ 

treatment in TNBC MDA-MB-231 cells. The assay kit provides all the 

essential reagents for a successful LSD1 activity/inhibition experiment. Each 

well in the 96 plates contained substrates at varying concentrations, with 

different concentrations of LSD1 enzyme, both in the presence or absence of 

TMZ. After an incubation period of 1 to 2 hours, the methylated histone 
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H3K4 was recognized with a high-affinity antibody. The amount of 

methylated histone is directly proportional to enzyme activity. Measurements 

were taken using BioTek ELx 808 plate reader. Cells were seeded in 96-well 

plates (about 3000 cells/well). Figure 2 depicts the demethylase assay 

procedures as described in the manufacturer's manual. The study included the 

following treatment groups 

• DMSO group: breast cancer cells treated with DMSO 

• Control group: breast cancer without treatment 

• Treatment group: Cells treated with 100μM of TMZ 

The LSD1 activity was assessed after 48 hours following TMZ treatment. 

Every study was performed in duplicate.

Figure 2. Diagram for Evaluating the Effects of TMZ on Histone Demethylase Activity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results 

Nuclear Protein Extraction

Nuclear proteins located inside the nuclei of MDA-MB-231 breast cancer 

cells were extracted. The Bicinchoninic Acid (BCA) Protein Assay was used 

to quantify nuclear protein concentration using the method described in a 

previous report. [21] 

The linear regression analysis yielded the equation Y = 0.0148x + 0.0888, 

with R^2 = 0.9969, relating the concentration of the standard (x) to its 

absorbance (y), as shown in Table 1 and Figure 3.

Figure 3. Linear Regression Analysis of Standard Samples 
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Table 2 displays the average sample concentration calculated using this equation, along with the corresponding plot shown in Figure 3. 

Table 1. Absorbance Measurement of Standard Solution 

 
Concentration of Standard (μg/ul) Absorbance of Standard 

0 0.072 

0 0.075 

2 0.123 

4 0.141 

12 0.265 

16 0.333 

20 0.379 

 

Table 2. Nuclear Protein Concentration of Breast Cancer Cells Following the TMZ Treatment 

 

Samples Absorbance of the Sample Concentration of Sample (μg/μl) 

DMSO 0.204 7.78 

0 μM TMZ 0.255 11.23 

100μM TMZ 0.149 4.07 

TMZ Enhances Histone Lysine Demethylase Activity

Identifying the molecular targets responsible for TMZ's therapeutic effects 

remains a significant challenge. Histones represent attractive candidates for 

TMZ-mediated methylation due to their central roles in chromatin 

organization and gene regulation, as well as their dynamic post-translational 

modification landscape. Our previous studies on TNBC breast cancer did not 

obtain a conclusive result regarding histone methylation levels by TMZ. [21] 

We therefore examined whether TMZ, through its active metabolite methyl-

diazonium, could directly modify histone-associated proteins in TNBC 

MDA-MB-231 cells. To test this hypothesis, we measured histone lysine 

demethylase (LSD1) activity following TMZ treatment. The initial 

experiment was conducted using a range of TMZ concentrations spanning 0 

to 200 μM. The results of an experiment examining histone demethylase 

activity under different treatment conditions are shown in Figure 4 (DMSO 

vehicle control, no treatment (0 μM), 50 μM, 100 μM, and 200 μM TMZ). A 

non-linear dose response with peak activity of LSD1 was observed. We 

repeated the experiment under 100 μM TMZ treatment. The results showed 

that TMZ has a stimulatory effect on LSD1 activity compared to the DMSO 

vehicle control and untreated cancer cells at 100uM concentrations, as shown 

in Figure 5. The substantial LSD1 activation by TMZ is an interesting 

finding that could have implications for understanding TMZ’s mechanism of 

action, particularly given LSD1’s role in chromatin remodeling and gene 

regulation. 

These findings reveal an intriguing difference in TMZ's epigenetic effects. 

While our previous studies showed that TMZ directly reduces histone 

methylation levels in glioblastoma cells. In contrast, similar effects were not 

conclusively observed in MDA-MB-231 breast cancer cells. However, the 

increase in histone demethylase activity following TMZ treatment in MDA-

MB-231 breast cancer cells suggests that histone methylation regulation 

involves a multifaceted regulatory network.  We propose that TMZ may 

methylate or activate histone demethylases in MDA-MB-231 cells. Through 

either the direct methylation mechanism or the indirect activation pathway, 

TMZ can effectively alter histone methylation patterns and chromatin 

architecture. 

Figure 4. Dose-Response Analysis of LSD1 Activity 
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Figure 5. Results of Histone Lysine Demethylase (LSD1) 

 

 

 

 

 

 

  

 

 

Discussion

Our previous studies examined the effects of TMZ on histone methylation 

levels in TNBC MDA-MB-231 and did not yield conclusive results. We plan 

to further confirm these results by using more reliable Western blot 

equipment in TNBC MDA-MB-231 cells. [21] The current study examined 

whether TMZ exerts its effects on histone-associated enzymes. The 

preliminary results showed a promising increase in LSD1 activity with TMZ 

at a 100uM concentration, supporting the concept that TMZ exerts anticancer 

effects through protein-level epigenetic modifications that extend beyond its 

well-established DNA-damaging effects. Furthermore, these results suggest 

that intrinsic differences in cellular epigenetic machinery may critically 

influence how tumors respond to alkylating agents. 

Lysine-specific demethylase 1 (LSD1) has emerged as a validated therapeutic 

target due to its overexpression across multiple cancer types. LSD1 

modulates gene expression by catalyzing the removal of methyl groups from 

specific histone lysine residues (H3K4me1/2 and H3K9me1/2), thereby 

altering chromatin structure and gene accessibility. The LSD family 

comprises two members—LSD1 and —both characterized by a conserved 

amine oxidase-like (AOL) domain (Figure 6). LSD1 (also known as 

KDM1A), first identified in 2004, specifically demethylates mono- and di-

methylated lysine residues at histone H3 lysine 4 and lysine 9 (H3K4me1/2 

and H3K9me1/2) [22-24].

Figure 6. Structure Overview for Lysine-specific Demethylase (LSD) Family 

 

 

 

 

 

 

 

 

 

 

 

 

 
Methylation of histone 3 lysine 4 (H3K4) by LSD1 is an important epigenetic 

mark and is significant for the regulation of cellular processes, as it is 

associated with active regions of the genome. This methylation was 

considered irreversible until the identification of numerous histone 

demethylases indicated that demethylation events play an important role in 

histone modification dynamics. LSD1 can demethylate mono- and di- 

methylated lysine residues on H3K4 but cannot remove trimethylated H3K4 

due to mechanistic constraints. 

LSD1 employs a flavin adenine dinucleotide (FAD)-dependent oxidation 

mechanism to catalyze demethylation. Lysine-specific demethylase 1 

(LSD1) catalyzes the oxidative demethylation of mono- and di- methylated 

H3 lysine 4 (H3K4me1/2) through an FAD-dependent mechanism. Oxidation 
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Journal of Medical and Clinical Case Reports | ISSN (2997-6022)  

Citation: Bernal, R, Martinez, P, Hills, R, Wang, T. Temozolomide Increases Histone Lysine Demethylase Activity in Breast Cancer Cells. Journal of Medical and Clinical Case Reports 3(1). 

https://doi.org/10.61615/JMCCR/2026/JAN027140131  

6 

of the ε-methylated lysine generates an iminium intermediate, which 

undergoes hydrolysis to release formaldehyde and yield demethylated lysine. 

Reduced FADH₂ is reoxidized by molecular oxygen, producing hydrogen 

peroxide. (Figure 7) [25-28].

Figure 7. LSD Enzymatic Mechanism - FAD-Dependent Lysine Demethylation Mediated by LSD1 

 

 

 

 

 

 

 

 

 

 

 

 

Histone lysine methylation and demethylation represent critical mechanisms 

of epigenetic regulation in cancer, with lysine-specific demethylase 1 (LSD1) 

emerging as a central mediator of TMZ's epigenetic effects in TNBC MDA-

MB-231 cells. Beyond its canonical histone substrates, LSD1 regulates 

several critical non-histone proteins, including DNMT1, p53, STAT3, and 

E2F1 [29-30], positioning it as a master regulator of gene expression and 

cellular phenotypes. Importantly, LSD1's functional output is highly context-

dependent: when complexed with CoREST or nucleosome remodeling 

complexes, it acts as a transcriptional repressor, whereas association with 

androgen or estrogen receptors confers transcriptional activator function [31-

32]. This dual functionality underscores LSD1's versatility as an epigenetic 

regulator and highlights the complexity of TMZ's protein-level mechanisms 

beyond its well-established DNA-damaging effects. 
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Conclusion 

Elucidating the mechanism by which temozolomide (TMZ) exerts its 

therapeutic efficacy is essential for advancing cancer treatment strategies. 

Recent investigations have identified histones—key regulators of DNA 

packaging and gene expression—as potential targets for TMZ-mediated 

methylation, given their dynamic post-translational modification profiles. 

This study demonstrates that the therapeutic benefits of TMZ extend beyond 

DNA to the protein level, specifically by enhancing histone demethylase 

activity. 

Our previous experiment did not yield a conclusive result regarding the effect 

of TMZ on histone methylation levels in MDA-MB-231 cells; the current 

findings reveal that TMZ increased histone lysine demethylase activity in 

TNBC MDA-MB-231 cells.   Collectively, this study provides preliminary 

yet promising evidence supporting TMZ activity at the protein level and 

warrants further mechanistic investigation to establish its therapeutic 

potential in cancer cells. 
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